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ABSTRACT 
The article will research a lander flying into the atmosphere with the flow velocity constraint, i.e. the total load 

by means of minimizing the total thermal energy at the end of the landing process. The lander’s distance at the 

last moment depends on the variables selected from the total thermal energy minimum. To deal with the problem 

we apply Pontryagin maximum principle and scheme Dubovitsky- Milutin. Solving boundary using the 

parameter and the solution obtained in the choice of variables. The results of simulations performed on Matlab. 
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I. Introduction 
Research on the problem of choosing an angle 

of launch of the flying object which is reducing 

velocity in  atmospheric conditions under which it is 

taken into account the minimizing of  total heat flow 

with the load limits of aircraft equipment. The total 

heat output of the device is the integral form of the 

following: 
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Where 


n  - full overload,  q - speed pressure, 

 

 

 

 

  - atmospheric density, V - velocity of the 

vehicle,  - path angle, H- height, L - the remote,  

G- the weight of the machine, m – mass, 0g  -  

acceleration due to gravity on the surface of the 

planet, R  - the radius of the planet, xC - the drag 

coefficient,  yC - lift coefficient,  S - characteristic 

area apparatus, 

NCCCkC yyxo ,,,,,,, maxmin

0   - constants. 

For the system (1) - (7) the initial conditions: 
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and conditions and limitations: 

    ,,,)( 111 HTHTVTV    
,)( aTL  T -  not fixed.                                (9) 

where a  – parameter. 

 

II. Application of Maximum principle in 

the regular case. 
           Let lander comes from the initial state (8) in a 

washed-position (9) in an optimal way in the sense 

of minimizing the total amount of heat under the 

assumption that the optimal trajectory regularity 

condition [3,4]. In the above problem, the regularity 

condition is equivalent to 
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In this case, the maximum principle is as follows:  


 QPLPVPHPP QLVH ,     (11) 

 NntL 
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 )(1  ,                      (12)  
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Here   t - the Lagrange multiplier, which is 

determined from the condition of Bliss  

[3, 4]. 
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 - Pontryagin function, 1L  - Lagrange function.  

QLHV PPPPP ,,,,  - corresponding  conjugate 

variables. For inequality constraints  (2) satisfies the 

complementary slackness.  

   0


Nnt  .                (15)                                 

Since the system (1)- (7) is autonomous and the 

descent no restrictions, the Pontryagin function  (11) 

is identically zero, ie             

   ,,,,,,0,, LHVxCuuxP yy 
 

 qLHV PPPPPP ,,,, .         (16) 

Conjugate variable  tPQ  normalized by the 

condition: 

 tPQ  -1.                           (17)                                                 

The initial conditions for the system (13) and are 

unknown parameters of the problem. 

Condition  tPQ   -1 and   0,,  uxP  is 

essentially determined by three free parameters: 

      321 0,0,0 CPCPCP LV      (18) 

since  0HP is determinedfrom the 

condition   0,,  uxP .  

In this case,the number of controlled functions at the 

end of the trajectory (9) coincides with the number 

of free parameters of the problem (1) - (9), (11), 

(12), because the time T is not fixed and is a free 

parameter. 

According to the principle of maximum control 

program chosen from the condition: 
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We write down the part Pontryagin function (11), 

which clearly depends onthe control  tCy  
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)(tCy can take control not only limit values (3), but 

also an intermediate, which is determined from the 

condition 
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We calculate three values of the function 0  in 

(20) 
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Equation (22) determine the nature of the optimal 

control problem of Pontryagin, ie provided 

that Nn 


. Solution of the problem is greatly 

simplified if the right end of the trajectory is 

controlled by the condition: 

  1HTH  .                                 (23) 

In this case,the solution of (1) - (9) is determined by 

the boundary conditions  

  11 )(, VTVT  ,    aTL  .  (24) 

And depends on three arbitrary constants 
21, CC  

and 
3C . 

           Thus, the initial problem is reduced to a three 

parameter problem (1) - (9), (13), (18), (24), and the 

optimal control is determined at each point t of the 

maximum principle (24).  

 

III. Restriction onoverload 
            In the task difficulty of determining the 

geometry of the optimal trajectory is the 

identification of points coming off the disabled 

Nn 


.  

Note that the total overload (2) has two components 

xn  and yn . The first is called a longitudinal 

overload, and the second - normal.  
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Instead of limiting (2), we introduce a new 

restriction  

  0,, 11  uxNnnNnn xyxy  (25) 

With an appropriate choice 1N of the inequality (25) 

is known to besatisfied constraint (2). This fact 

follows from 

  22

1 yxxy nnnnN  .              (26) 

equal sign occurs when 0yC . 

We now compute the derivative of   ux,  (25) 
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In this case, the Lagrange multiplier  t for 

limiting   0, ux  (25) is determined by the 

formula 
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IV. Necessary optimality conditions inthe 

irregular case 
Now consider the case when the optimal 

trajectory contains an interval, when Nn 


,  

And in this interval at some point 0

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.  

The set of points defined by the equations: 
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following [3], we call irregular points. For the 

problem 0

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n
 at 0yC . For the given 

problem we can use the results of  A. I. Dubovistky 

and A. A. Miliutin [3, 4]. According to [3, 4] in the 

presence of irregular points conjugate system of 

equations are 
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Here-  t Lagrange multiplier-a 
d

dt


generalized 

function. For these objects are made complementary 

slackness condition 
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From (29) it follows that in their regular point (28) 

and the conjugate variables will experien ceracing 

on the values of 
H

n






  and 
V

n


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  when 0 . 

This is the essential difference between the case of 

irregular, where the conjugate variables are 

continuous functions for mixed class constraints 

[3, 4].  

Besides the conditions (29) - (31) on the 

optimal trajectory should be the conditions of 

integrability of the Lagrange multipliers and the 

normalization condition(non-triviality condition of 

the maximum principle). 

 

V. Example and numerical result 
For more details of the problem, we solve the 

problem of finding the minimum total heating of  

space shuttle  [7], constants and the boundary 

conditions are:  
min

yC  =-0.5; 6.0max yC ; 

50000
m

S 12 kgkm ,            

3

0 10.3769.2  kgkm
3
, 

kmR 2.6371 ; 88.00 xC , 

k = 0.5 ; 
23

0 10.8.9  kmsg , 

C = 20; N = 4 ; 145.0 1km , 

  0 = -1.25(deg);V(0) =0.35kms
1
, 

H(0)= 100(km);L(0)= 0(km). 

 

The resultreceivedby using Matlab:                    

    
 Figure 1.Height H [km]  
Figure 1illustrates the shuttle's  altitude over time, 

 we see that the height H decreases rapidly 

from100km down to 40km over a period [0, 200s]. 

     

            Figure 2. Lift coefficient yC  

   In Figure2 illustrates the state of the  

   control variables change over time. 

 

t [s] 

H [km] 

t [s] 

yC  
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          Figure 3. Full overload  n  

 
       Figure 4.Velocity  V[km/s]      

Figure 4 shows the velocity of the shuttle  

also dropped significantly during this 

period. 

 
Figure 5.  Path angle [deg]  

Figure 5 describes the orbital inclination angle. 

 
         Figure 6. Remote L [km] 

 

Figure 6 illustrates the distance of  the landing ships 

over time. We found that the distance L(t) does not 

increase much after 200 speriod. 

 
                    Figure 7. Totalheat Q  

 
 

Figure 7, in the interval [0, 200s] the total amount of 

surface temperature increase and stabilize the ship 

during the period close to landing [200-720s]. 

According to our simulations on the heat at the 

surface of the vessel can be considered to have been 

minimized during landing. 

 

VI. Conclusion 
Three parameter boundary value (24), the 

problem is solvedfor a fixed value a. Next, we can 

choose the desired value a from the minimum of the 

minimum value of the functional (1).The boundary 

value problem was solved by the continuation of 

solutions to the parameter [6]. 
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